Search results for "Chlorophyll Binding Proteins"
showing 6 items of 6 documents
Comparison of quantum dot-binding protein tags: Affinity determination by ultracentrifugation and FRET
2013
Abstract Background Hybrid complexes of proteins and colloidal semiconductor nanocrystals (quantum dots, QDs) are of increasing interest in various fields of biochemistry and biomedicine, for instance for biolabeling or drug transport. The usefulness of protein–QD complexes for such applications is dependent on the binding specificity and strength of the components. Often the binding properties of these components are difficult and time consuming to assess. Methods In this work we characterized the interaction between recombinant light harvesting chlorophyll a / b complex (LHCII) and CdTe/CdSe/ZnS QDs by using ultracentrifugation and fluorescence resonance energy transfer (FRET) assay exper…
Pigment Binding, Fluorescence Properties, and Oligomerization Behavior of Lhca5, a Novel Light-harvesting Protein
2005
A new potential light-harvesting protein, named Lhca5, was recently detected in higher plants. Because of the low amount of Lhca5 in thylakoid membranes, the isolation of a native Lhca5 pigment-protein complex has not been achieved to date. Therefore, we used in vitro reconstitution to analyze whether Lhca5 binds pigments and is actually an additional light-harvesting protein. By this approach we could demonstrate that Lhca5 binds pigments in a unique stoichiometry. Analyses of pigment requirements for light-harvesting complex formation by Lhca5 revealed that chlorophyll b is the only indispensable pigment. Fluorescence measurements showed that ligated chlorophylls and carotenoids are arran…
Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-…
2007
Photosynthetic light-harvesting complexes (LHCs) are assembled from apoproteins (Lhc proteins) and non-covalently attached pigments. Despite a considerable amino acid sequence identity, these proteins differ in their oligomerization behavior. To identify the amino acid residues determining the heterodimerization of Lhca1 and Lhca4 to form LHCI-730, we mutated the poorly conserved second transmembrane helix of the two subunits. Mutated genes were expressed in Escherichia coli and the resultant proteins were refolded in vitro and subsequently analyzed by gel electrophoresis. Replacement of the entire second helix in Lhca4 by the one of Lhca3 abolished heterodimerization, whereas it had no eff…
Identification of N- and C-terminal Amino Acids of Lhca1 and Lhca4 Required for Formation of the Heterodimeric Peripheral Photosystem I Antenna LHCI-…
2002
Apoproteins of higher plant light-harvesting complexes (LHC) share considerable amino acid sequence identity/similarity. Despite this fact, they occur in different oligomeric states (i.e., monomeric, dimeric, and trimeric). As a step toward understanding the underlying structure requirements for different oligomerization behavior, we analyzed whether amino acids at the N- and C-termini of Lhca1 and Lhca4 are involved in the formation of the heterodimeric LHCI-730. Using altered proteins produced by deletion or site-directed mutagenesis for reconstitution, we were able to identify amino acids required for the assembly of LHCI-730. At the N-terminus of Lhca1, W4 is involved in heterodimerizat…
Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I
2000
AbstractUltrafast dynamics of a reconstituted Lhca4 subunit from the peripheral LHCI-730 antenna of photosystem I of higher plants were probed by femtosecond absorption spectroscopy at 77 K. Intramonomeric energy transfer from chlorophyll (Chl) b to Chl a and energy equilibration between Chl a molecules observed on the subpicosecond time scale are largely similar to subpicosecond energy equilibration processes within LHCII monomers. However, a 5 ps equilibration process in Lhca4 involves unique low energy Chls in LHCI absorbing at 705 nm. These pigments localize the excitation both in the Lhca4 subunit and in LHCI-730 heterodimers. An additional 30–50 ps equilibration process involving red …
Pigment composition of PS II pigment protein complexes purified by anion exchange chromatography. identification of xanthophyll cycle pigment binding…
1997
Summary The pigment composition of the chlorophyll binding proteins of Photosystem II (PS II) of spinach ( Spinacea oleracea L.) has been determined using sucrose gradient ultracentrifugation, anion exchange chromatography and HPLC based pigment analysis. The xanthophyll cycle pigments violaxanthin, antheraxanthin and zeaxanthin were exclusively found in the proteins of the outer PS II antenna, with the highest amounts being present in the minor chlorophyll alb binding proteins CP 29 and CP 26. PS II core particles containing the reaction centre proteins D1, D2, cytochrome b 559 and the proteins of the inner antenna CP 47 and CP 43 bind β-carotene as the only carotenoid. The presence of the…